LinkedIn

It Takes Two To Tango: The Interdependence of Data and Technology

2018-September-18

Everyone’s talking about artificial intelligence and machine learning (AI and ML). But what’s often overlooked is the degree to which they depend on good data in order to be effective. It’s a symbiosis that is particularly relevant to compliance, where AI and ML have huge potential to reduce costs and risk. 

We recently published a whitepaper aimed at clarifying these “cognitive technologies” and illustrating how they can be applied in different business settings.

Let’s dig a little deeper and discuss the tight interdependence of data and ML in the context of anti-money laundering and regulatory compliance. As their name suggests, ML algorithms need to learn – a process that begins by “training” them on specific datasets. You can’t just use any data for this. It needs to contain the correct answer or actual outcome, otherwise known as the “target”. As the algorithms are run over and over, they find patterns in the data that map the input data to the target. The result is a “machine learning model” that captures these patterns and relationships, and can then be used to generate expected outcomes for new data sets. To recap, a truly accurate, trained model requires excellent data as well as highly advanced algorithms. Hold that thought for now.

Take a look at the financial services industry. Here, the continuing rise in both financial crime and government regulations means financial institutions need to know a great deal about the money they’re taking in and paying out. All of this screening and probing creates mountains of false positives, which are burying compliance departments around the globe. Naturally, firms are rushing to see whether they can apply AL and ML to relieve the pressure on their analysts and drive efficiency – while still maintaining a high level of protection.

However, many risk and compliance executives encounter solution providers that offer either the data or the algorithms, but not both. Data providers can deliver tremendous amount of raw material – about watchlists, sanctions, adverse media and politically exposed persons – to help provide deeper insight around potential customers and partners. However, without a true ML model, all of this data is just that. More data. And more data can create more workload, not less. Conversely, technology companies with powerful AI engines offer platforms that claim to be ready to dramatically reduce false positives, but their algorithms are completely untrained. For customers, this means a tremendous amount of work is needed just to validate that the resulting model is accurate.

So neither data companies nor AI engine providers alone can fully solve the KYC/AML screening challenge. Each brings half of the solution. But if you can apply advanced, purpose-built algorithms to great data, you have the answer.

This is what RDC does. Over the past 15 years, we have amassed the industry’s largest risk-relevant database with curated and indexed content, transforming it from raw data into highly tailored risk profiles. Our algorithms have also learned from one trillion screens. All of this data is fuel for the Compliance Cloud, a SaaS platform that leverages ML, natural language processing and neural networks to dramatically change how screening is done – reducing it to risk-tolerance matching based on mathematical probabilities.

By bringing together data (including the outcome or target data) and leading-edge algorithms purposely developed for KYC/AML screening, we can dramatically improve screening efficiency, eliminate false positives and improve the productivity of compliance analysts worldwide.

It’s a perfect illustration of how in compliance, perfect performance depends on two elements – data and technology – working together in harmony

18

December

2018

Making Negative News a Positive for FinTech Companies

By Joel Cope | December 18, 2018 Adverse media, or negative news, is an important component in the anti-money laundering […]

View more
11

December

2018

Customer Screening is the DIY Project From Hell

By Michael Kerman | December 11, 2018 Every year, without fail, many banks and financial institutions embark on internal projects […]

View more
03

December

2018

Improving the Impact of Adverse Media Screening for Fintech Companies

Adverse media screening has been widely adopted by UK fintech companies as part of their AML compliance programmes. But where […]

View more
30

November

2018

Protective Scrutiny: The Role of Customer Screening in the Modern Customer Identification Program

This paper builds on our previous whitepaper, “Financial Crime: Can We Win the War?” and drills into customer screening and […]

View more
29

November

2018

Financial Crime: Can We Win the War?

The problem of financial crime is not a new one, but it is larger and more pervasive than most people […]

View more

RDC a Leader in IDC’s KYC Marketscape

RDC has been named as a “Leader” in IDC MarketScape: Worldwide Know-Your-Customer Solutions in Financial Services 2018 Vendor Assessment.

View more
01

November

2018

Using Natural Language Processing to Interpret Risk-Relevant Content

Explore the world of natural language processing (NLP), a fast-evolving technology that’s ideally suited to making sense of unstructured risk intelligence data at […]

View more
29

October

2018

RegTech – Not Just for Startups

By Michael Kerman | October 29, 2018 After the 2008 crisis, financial institutions faced a mountain of new regulations and […]

View more